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 ในการวจิยัน้ีไดใ้ห้นิยามเก่ียวกบัการมีสมบติัมอดูล C11 เล็กสุดและมอดูล C11 ใหญ่สุด

ของมอดูล M บนริง R ท่ีมีสมบติัเปล่ียนหมู่พร้อมเอกลกัษณ์ มอดูล M กล่าววา่มีสมบติัมอดูล 

C11 เล็กสุด ถา้ทุกๆมอดูลยอ่ยเล็กสุดของ M สามารถหาส่วนเติมเตม็ท่ีมีสมบติัส่วนของผลบวก

ตรงใน M และมอดูล M  มีสมบติัมอดูล C11 ใหญ่สุด ถา้ทุกๆมอดูลยอ่ยใหญ่สุดของ M 

สามารถหาส่วนเติมเตม็ท่ีมีสมบติัส่วนของผลบวกตรงใน M  ผลลพัธ์ท่ีไดคื้อถา้ทุกๆผลบวกตรง

ของมอดูล M มีสมบติั C11 เล็กสุดแลว้มอดูล M มีสมบติั C11 เล็กสุด และสมบติัมอดูล C11 

ใหญ่สุดก็สามารถพิสูจน์ไดเ้ช่นกนั นอกจากน้ีเรายงัไดพ้ิสูจน์วา่ถา้ทุกๆส่วนของผลบวกตรงของ

มอดูล M มีสมบติั C11 เล็กสุดแลว้มอดูล M มีสมบติั C11 เล็กสุด และสมบติัมอดูล C11 

ใหญ่สุดก็สามารถพิสูจน์ไดเ้ช่นกนั ให ้  1 2M M M เป็นมอดูลท่ีมีสมบติัมอดูล C11 เล็กสุด 

โดยท่ีส่วนของผลบวกตรง K ใดๆของมอดูล M มีสมบติั  2 0K M  และ  2K M  มี

สมบติัเป็นส่วนของผลบวกตรงใน M แลว้ 1M มีสมบติั C11 เล็กสุด 

 ถา้ M มีสมบติัก่อก าเนิดจ ากดั คลา้ยคลึงเชิงภาพฉาย และก่อก าเนิดในตวัเองแลว้ M มี

สมบติัมอดูล C11 ใหญ่สุด (C11 เล็กสุด) ก็ต่อเม่ือเอนโดมอร์ฟิซึมริง S มีสมบติัริง C11 ใหญ่

สุด (C11 เล็กสุด) 
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 In this thesis, we defined minC11 and maxC11 modules M over an associative 

ring R with identity. An R-module M is said to be a minC11 module, if every minimal 

submodule has a complement which is a direct summand of M. An R-module M is said 

to be a maxC11 module, if every maximal submodule has a complement which is a 

direct summand of M. Then any direct sum of modules with minC11 satisfies minC11 

and any direct sum of modules with maxC11 satisfies maxC11. Furthermore, we prove 

that any direct sum of modules with minC11 (maxC11) satisfies minC11 (maxC11). Let 

1 2M M M   be a minC11-module such that for every direct summand K of M 

2 0K M  , 2K M  is a direct summand if M. Then 1M  is a minC11-module.   

Moreover, if M is a finitely generated, quasi-projective right R-module which is 

a self-generator, then M is a maxC11 (minC11) module if and only if the endomorphism 

ring S of a right R-module M is a right maxC11 (minC11) ring.   
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CHAPTER  1 

INTRODUCTION 

 

Mohamed and Muller (1990 : 12-37) introduced the concept of extending 

module, where R-module M is called an extending (or CS), if every submodule is 

essential in a direct summand of M. Equivalently, M is an extending, if and only if every 

closed submodule is a direct summand. Later, Dung, Huynh, Smith, and Wisbauer, 

studied extending modules and found many properties of extending modules. From that 

time, characterizations and properties of certain extending modules have become 

interesting and important to researchers in this area. 

 There are many papers concerned with the generalization of CS-module, an 

important tool in this is the notion of minCS and maxCS modules. Hazmi introduced 

minCS and maxCS modules following that an R-module M is called minCS (maxCS) if 

every minimal submodule (every maximal submodule with nonzero right annihilator) 

is a direct summand of M. Hadi and Majeed (2012a : 1-13) studied minCS (max) CS 

modules. They proved that, if R is a nonsingular ring then R is a maxCS ring if and only 

if R is a minCS ring. Later they proved that a direct summand of a minCS (maxCS) 

module is a minCS (maxCS) module, but the converse is not true in general. 

 As we know the direct sum of two CS-modules is not a CS-module. One of the 

most interesting questions concerning CS-modules is when a (finite or infinite) direct 

sum of CS-modules is also a CS-module. Smith and Tercan, (1993 : 1809-1847) 

introduced C11-modules defined as follows : a module M satisfies C11 if every 

submodule has a complement which is a direct summand of M, i.e., for each submodule 

N of M there exists a direct summand K of M such that K is a complement of N in M.  

A C11-module was defined as a general of CS-modules. Then we would like to work on 

minC11 and maxC11 modules. 

For this study, the reseacher shall defined the definition of minC11 and maxC11 

modules and studied some properties of minC11 and maxC11 modules. Moreover, we 

shall find relations of minC11 and maxC11 modules and its endomorphism rings.
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Objective of the Study 

 1)  to define the definition of minC11 and maxC11 modules ; 

 2)  to prove that any direct sum of module with minC11 (maxC11) satisfies 

minC11 (maxC11) ; 

 3)  to give the conditions to the direct summand of minC11 module satisfies 

minC11, and  

 4)  to find relations of minC11 (maxC11) modules and their endomorphism rings. 

 

Scope and Limitation 

 Throughout this study, all rings are associative with identity and all modules are 

unitary right R-modules. In this study, we shall define the definition of minC11 and 

maxC11 modules. The focus of our discussion in this note is mainly on the direct sum 

of minC11 and maxC11 modules. Moreover, we try to find some conditions of minC11 

(maxC11) modules and apply to minC11 (maxC11) rings. 

 

Expected Benefits for the Study  

 For this study, the definition of minC11 and maxC11 modules will be defined. 

Any direct sum of modules with minC11 (maxC11) satisfies minC11 (maxC11) will be 

proved. The conditions to the direct summand of minC11 module satisfies minC11 will 

be obtained. Finally, pure mathematical research helps us to improve and refresh the 

quality of what we teach, and certainly the world needs a large number of graduates 

with a wide variety of mathematical skills to fill the wide variety of positions that 

require some mathematics or the ability to analyze problems logically.



 
 

CHAPTER  2 

REVIEW OF LITERATURE 

 

 In this chapter, we investigate some fundamental properties of CS modules and 

study the direct sum of minC11 and maxC11 modules. Moreover, their related results are 

stated. Therefore, for this study some useful definitions and theorems will be presented 

as follows. 

 

Literature Review 

Mohamed and Muller (1990 : 12-37) introduce the extending module defied by 

a R-module M is called an extending (or, CS), if every submodule is essential in a direct 

summand of M. Equivalently, M is extending, if and only if every closed submodule is 

a direct summand. Let M be a right R-module. We consider the following conditions. 

(C1) Every submodule of M is essential in a direct summand of M. 

(C2) Every submodule of M which is isomorphic to a direct summand of M is 

itself a direct summand of M. 

(C3) For any direct summands 1 2,M M  of M such that 1 2 0,M M   the 

submodule 1 2M M is also a direct summand of M. 

M is called continuous if it satisfies conditions (C1) and (C2) ; quasi continuous 

if it satisfies conditions (C1) and (C3) ; CS-module if it satisfies only the conditions 

(C1).  

From the above conditions, we have : 

injective quasi-injective  continuous quasi-continuous CS 

Dung, Huynh, Smith, and Wisbauer (1994 : 55-65) studied extending module 

and found many properties of extending modules. The interesting properties of 

extending module that is any direct summand of an extending module is also extending. 

In particular, for any ring R,  -injective R-modules are extending. Moreover, let 

1 2 ... nM M M M     be a finite direct sum of relatively injective module ,iM  then 

M is extending if and only if all iM  are extending. 
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Smith and Tercan (1993 : 1809-1847) defined C11 module as follows. An R-

module M is called a C11 module, if every submodule of M has a complement which is 

a direct summand of M, i.e., for each submodule N of M there exists a direct summand 

K of M such that K is a complement of N in M. C11 modules was defined as a general 

of  CS modules. They studied C11 modules and found many properties of C11 modules 

as follows. 

Any direct sum of modules with C11 satisfies C11. Moreover, a module M 

satisfies C11 if and only if 2 ( )M Z M K   for some nonsingular submodule K of M 

and both 2 ( )Z M  and K satisfies C11. 

Husain (2005 : 13-53) introduce the concept of minCS and maxCS modules, 

where an R-module M is called minCS (maxCS) if every minimal submodule (every 

maximal submodule with nonzero right annihilator) is a direct summand of M. This 

result, in particular, Hadi and Majeed proved that, if R is a nonsingular ring then R is a 

maxCS ring if and only if R is a minCS ring. Later, they proved that a direct summand 

of minCS (maxCS) modules is minCS (maxCS) modules, but the converse is not true, 

in general. Moreover, Thuat, Hai, Nghiem and Chairat, proved that if M is semiprime, 

weak duo module, then M is maxCS if and only if it is minCS. In addition, Jain, Al-

Hazmi and Alahmadi, proved that if R is a prime ring which is not a domain, then R is 

a right nonsingular, right max-min CS with uniform right ideal if and only if R is left 

nonsingular, left max-min CS with uniform left ideal. 

 Barnard (1981 : 174-178) defined multiplication modules and residual in a ring 

as follows.  

 A right R-module M is called a multiplication modules if every submodule of 

M is of the from MI, for some ideal I of R. Let N be a submodule of M of an R-module 

M, the ideal 

( : ) { | }RN M r R Mr N     

is called residual of N by M in R and (0 : )RM  is called annihilator of M. 

 Hadi and Majeed (2012a : 1-13) studied multiplication and proved their 

theorems as follows. 

 In commutative ring R, if M is a faithful, finitely generated, and multiplication 

R-module, then M is minCS (maxCS)-modules if and only if R is minCS (maxCS)-rings.
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Theoretical Background 

Definitions and theorems 

 For basic definitions, theorems and notations that will be appeared in this study, 

we refer to Smith and Tercan (1993), Mohamed and Muller (1990), Tercan and Yucel 

(2016), Kasch (1982), Lam (1991), Husain (2005), and Dung, Huynh, Smith and 

Wisbauer (1994). However, many of them can also be found in other texts on modules 

and rings theory, e.g. Anderson-Fuller (1992), Faith (1973) and Passman (1991). Here 

we recall some notations which are used for investigations presented in this study. 

 

Definition 2.1  A ring is a non-empty set R together with two binary operations, that 

we shall denote by   and   and called addition and multiplication (also called product), 

respectively, such that, for all , ,a b c R  the following axioms are satisfies. 

 (1)  ( , )R   is an additive Abelian group. 

 (2)  ( , )R   is a multiplicative semi group. 

 (3)  Multiplication is distributive (on both sides) over addition; that is, for all 

, , , ( ) ( ) ( ), ( ) ( ) ( ).a b c R a b c a b a c a b c a c b c              

(The two distributive law are respectively called the left distributive law and the right 

distributive law.) We shall usually write simply ab  instead of a b  for , .a b R  

 

Definition 2.2   An associative ring is a ring R in which multiplication is associative; 

that is, for all , , ,a b c R ( ) ( ).a b c a b c      Our rings will be associative rings. 

 

Definition 2.3   A ring with identity is a ring R in which the multiplicative semi group 

has an identity element; that is, there exists e R such that ae a ea   for all .a R  

The element e  is called the identity or unity element of R. Generally, the identity 

element is denote by 1. 

 

Definition 2.4   A commutative ring is a ring R in which multiplication is commutative; 

that is, ab ba  for all , .a b R  

 Throughout, all ring are associative rings with identity unless otherwise stated. 
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Definition 2.5   Let ( , , )R    be a ring and let S be a non-empty subset of R. Then S  

is called a subring of R if ( , , )S    itself is a ring. 

 

Definition 2.6   A non-empty subset I of R is called a right ideal of R if 

 (1)  ,a b I  implie ,a b I   and  

 (2)  ar I  for all a I  and .r R  

 

Definition 2.7  Let I be a right ideal of R. 

 (1)  I is called maximal if I R  and for any right ideal ,J I  either J I  or 

.J R  

 (2)  I is called minimal if 0I   and for any right ideal ,J I  either J I  or 

0.J   

 

Definition 2.8   Let M be an Abilian group with binary operation . Let EndM denote 

the collection of endomorphism   of M, i.e., : M M   satisfies  

( ) ( ) ( )a b a b       ( , ).a b M  

Define addition and multiplication in EndM by 

( )( ) ( ) ( )a a a       

( )( ) ( ( ))a a      

for all , EndM, .a M  With these definition it can checked that ( ( ), , )End M    

is a ring, celled the endomorphism ring of M, with zero element the zero mapping 

0 : M M  given by 0( ) 0 ( )m m M   and identity element the identity mapping 

1: M M  given 1( ) ( ).m m m M    
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Definition 2.9   Let M be an Abelian group and let R be a ring with 1. Then M is said 

to be a right R-module if and only if there exists a map ,M R M   written 

multiplicatively as ( , ) ,m r mr  such that 

  (1)  
1 2 1 2( ) ,m m r m r m r    

  (2)  
1 2 1 2( ) ,m r r mr mr           

  (3)  
1 2 1 2( ) ( ) ,m r r mr r  and 

  (4)  1m m  

for all 1 2, ,m m m M  and 1 2, , .r r r R  Note that if R is a field, then a right R-module 

is precisely a right R-vector space. 

 

Throughout, all module are unitary right R-module unless otherwise stated. 

 

Definition 2.10   A non-empty subset N of right R-module M is called submodule of M 

if  

 (1)  for all , ,a b N  a b N   and  

 (2)  ar N for all a N  and .r R  

 

Definition  2.11   Let M be an R-module and N be a submodule of M. 

 (1)  N is called a maximal submodule of M if N M  and for any submodule K 

of M such that ,N K  we have K M  or .K N  

 (2)  N is called a minimal submodule of M if 0N   and for any submodule K 

of M such that ,K N  we have 0K   or .K N  

 

Definition 2.12   Let X be a subset of R-module M. Then the set 

1

| , ,
n

i i i i

i

N x r x X r R n


 
    
 
   

is a submodule of M and it is called the submodule of M generated by X and is denoted 

by |X).  A subset X of a module M is called a generating set of M if | ) .X M   
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Definition 2.13   A module (or right ideal) is called finitely generated if and only if it 

has a finite generating set.  

 

Definition 2.14   An R-module M is called simple module if 0M   and for any 

submodule N of M, 0N   or .N M  We emphasize in addition that the minimal 

submodules are precisely simple submodules.  

 

Lemma 2.15   An R-module M is simple   0 [ 0 ].M m M m mR M       

Proof. (Kasch F. 1982:19)                                                                                               

 

Definition 2.16   An R-module M is called cyclic : 0 0[ ].m M M m R     

 

Definition 2.17   An R-module M is called the direct sum of the set { | }iB i I  of 

submodules iB  of M, in symbols: 

   

,

1) ,

2) 0 .

i

i I

i
i I

j i

i I i J

M B

M B

j I B B





 

 


    
     
  




 

 i
i I

M B


   is called a direct decomposition of M into the sum of submodules 

{ | }.iB i I  

In case of finite index set, say {1, 2, 3, ..., }.I n  M is also written as  

   1 2
1

... .
n

n i
i

M B B B B


      

 

Definition 2.18   A submodule N of M is called a direct summand of M, denote by 

,N M  if there exists a submodule K of M with .M N K   Example, in ZZ  the 

ideal nZ  with 0, 1n n    is not a direct summand.  

 

Definition 2.19   An R-module 0M   is called a directly indecomposable if it is not a 

direct sum of two non-zero submodules. i.e., 0 and M are the only direct summands of 
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M. Examples, every simple module M is directly indecomposable for it has only 0 and 

M as submodules, Z
Z  is a directly indecomposable. 

 

Definition 2.20   Let N be a submodule of an R-module M. We define factor module  

(or quotient module) / { | },M N m N m M    with the addition and multiplication by 

any elements 1 2, ,m m m M  and r R  by setting,  

 (1)  1 2 1 2( ) ( ) ( )m N m N m m N       and  

 (2)  ( ) .m N r mr N    

 Note that the factor module has a natural map : /M M N   define by 

.m m N  This natural map is called natural (canonical) epimorphism of M to the 

factor module / .M N  Moreover, it is easy to see that   is epimorphism. 

 

Definition 2.21   Let R be a ring and M be an R-module. The following are given 

 (1)  a submodule N of M is called essential (or large) in M, denote by ,eN M  

if N has non-zero intersection with any non-zero submodule of M. If N is essential in 

M, we say that M is essential extension of N. Clearly, .eM M  

 (2)  a submodule N of M is called complement to the submodule K of M, if N is 

maximal with respect to property that 0.N K   A submodule N of M will be called 

complement in M, provided there exists K M such that N is a complement of K in 

M. By Zorn’s Lemma, any submodule of M has a complement. 

 (3)  a submodule N of M is called closed in M, denote ,clN M  if it has no 

proper essential extension in M. i.e., if K M  such that ,eN K  then .N K  Closed 

submodule are precisely complement submodule (Husain. 2005:14).  

 

Theorem 2.22   Every submodule in M  is a direct summand if and only if every 

submodule is closed. 

Proof. (Kasch. 1982:139).           

 

Definition 2.23   An R-module M is called a uniform module if 0M   and any two 

non-zero submodules of M intersect nontrivially (equivalently: any non-zero 
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submodule of M indecomposable, or else: any non-zero submodule of M is essential in 

M). Clearly, uniform closed submodule of M are precisely minimal closed submodule 

of M.  

 

Definition 2.24   A right annihilator of M in R, denote by ( ),Rann M  is the set of all 

elements in R such that, for all ,m M  0.mr   

 

Definition 2.25   An R-module M is called a faithful module if its ( ) 0.Rann M   

 

Definition 2.26   An R-module M is called an extending module (or CS-module) if 

every submodule is an essrntial in a direct summand of M. Equivalently, M is extending, 

if and only if every closed submodule is a direct summand. 

 

Definition 2.27   An R-module M is called a C11 module, if every submodule of M has 

a complement which is a direct summand of M. i.e., for each submodule N of M, there 

exists a direct summand K of M such that K is a complement of N in M. 

 

Definition 2.28   An R-module M is called a minCS module if every minimal 

submodule is a direct summand of M. 

 

Definition 2.29   An R-module M is called a maxCS module if every maximal 

submodule with nonzero right annihilator is a direct summand of M. 

 

Proposition 2.30   Let .N M  There exists ,K M  containing N, such that 

.e cN K M   

Proof.  (Tercan and Yucel. 2016:76).         

 

Definition 2.31   Let M is called a self-generator if it generates all its submodules. 

 

Lemma 2.32   Let M be a finitely generated, quasi-projective right R-module which is 

a self-generator and S its endomorphism ring. Then X is a direct summand of M if and 
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only if { | ( ) }XI f S f M X    is a direct summand of S. In this case, ( )X M e  and 

XI Se  for some idempotent .e S   

Proof. (Thuat, Hai, Nghiem, and Chairat. 2016:3)        

 

Lemma 2.33   Let M be a finitely generated, quasi-projective right R-module which is 

a self-generator and S its endomorphism ring. Then  

 (1)  X is a maximal submodule of M if and only if { | ( ) }XI f S f M X    is 

a maximal right ideal of S. 

 (2)  Conversely, K is a maximal right ideal of S if and only if ( )
s K

KM s M


  

is a maximal submodule of M. 

Proof. (Thuat, Hai, Nghiem, and Chairat. 2016:3)        

 

Lemma 2.34   Let M be a finitely generated, quasi-projective right R-module which is 

a self-generator and S its endomorphism ring. Then  

 (1)  X is a minimal submodule of M if and only if { | ( ) }XI f S f M X    is 

a minimal right ideal of S. 

 (2)  Conversely, K is a minimal right ideal of S if and only if ( )
s K

KM s M


  

is a minimal submodule of M. 

Proof. (1)  Let X is a minimal submodule of M and let { | ( ) }XI f S f M X   which 

is a right ideal of S. By hypothesis 0.XI   Suppose that, there exists a non-zero right 

ideal J of S such that 0 .XJ I   Then we have 0 ,XJM I M X    since M is a self-

generator. Hence .XJM I M  This implies that .XJ I  Therefore, XI  is a minimal 

right ideal of S. 

 Conversely, let { | ( ) }XI f S f M X   be a right ideal of S and let X is a 

minimal submodule of M. Then 0.X   Suppose that, there exists a non-zero submodule  

N of M such that 0 .N X   Then we have 0 NN I M    ,XX I M  since M is a 

self-generator. Hence .N XI I  This implies that .N X  Therefore, X  is a minimal 

right ideal of S. 

  (2)  We use the same argument as that given in (1).       



12 
 

 

On faithful multiplication modules  

 Throughout, this section all ring will be commutative ring with identity and all 

right R-module will be unitary. 

 

Definition 2.35   Let R be a ring and N and K be submodules of an R-module M, the set 

( : ) { | }N K r R Kr N    is called residual of N by K in R and it is an ideal of R, and 

for every ideal I of R, the set ( : ) { | }N I m M mI N    is called residual of N by I in 

M and it is a submodule of M. 

 

 Definition 2.36   An R-module M is called multiplication module if for each N of M, 

there exists an ideal I of R such that .N MI  

 

Proposition 2.37   If M is a faithful multiplication R-module, then the following 

statements are equivalent. 

 (1)  M is finitely generated. 

 (2)  If A and B are ideals of R such that MA MB  then .A B  

 (3)  For each submodule N of M there exists a unique ideal I of R such that 

.N MI  

 (4)  M MA  for any proper ideal A of R. 

 (5)  M MP  for any maximal ideal P of R. 

Proof. (El-Bast and Smith. 1988:768).                                                   

 

Proposition 2.38   Let M be a faithful R-module. Then M is a multiplication module if 

and only if  

 (1)  ( ) ( )MI M I 
  
    for any non-empty collection of ideals ,I    of 

R, and  

 (2)  for any submodule N of M and ideal A of R such that N MA

  there exists 

an ideal B  with B A

  and .N MB  

Proof. (El-Bast and Smith. 1988:759).         
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Proposition 2.39   If M is a faithful multiplication R-module, then M is a finitely 

generated. 

Proof. (Lee D. and Lee H. 1993:133)         

 

Proposition 2.40   Let M be a faithful multiplication R-module. Then a submodule N 

of M is maximal if and only if there exists a maximal ideal I of R such that .N MI  

Proof.  Suppose that N is a maximal submodule of M. Then, there exists an ideal I of R 

such that .N MI  It is sufficient to prove that I is maximal ideal of R. For any ideal J 

of R such that ,I J R   .N MI MJ MR M     Since N is a maximal submodule 

of M, either MJ MI  or .MJ M  If MJ MI  then J I  by Proposition 2.37 (2). If 

MJ M  then ,J R  again by Proposition 2.37 (2). Therefore, I is a maximal ideal of 

R. 

 Conversely, suppose that N MI  for some maximal ideal I of R. Let X be a 

submodule of M such that .N X M   Thus  

   ( : ) ( : ) ( : ) .I MI M N M X M R     

Since I is a maximal ideal of R, either ( : )X M I  or ( : ) .X M R  If ( : )X M I  then 

( : ) .X M X M MI N    If ( : )X M R  then ( : ) .X M X M MR M    This show  

that N is a maximal submodule of M.          

 

Proposition 2.41   Let M be a faithful multiplication R-module. Then a submodule N 

of M is minimal if and only if there exists a minimal ideal I of R such that .N MI  

Proof.  Suppose that N is a minimal submodule of M. Then, there exists an ideal I of R 

such that .N MI  It is sufficient to prove that I is minimal ideal of R. For any ideal J 

of R such that ,J I  we let .JM MI N   By hypothesis, either 0MJ   or .MJ MI  

If 0MJ   then 0J   because M is faithful. If MJ MI  then ,J I  by Proposition 

2.37 (2). Therefore, I is a minimal ideal of R. 

 Conversely, suppose that N MI  for some minimal ideal I of R. Let X be a 

submodule of M such that .X N  Then ( : ) ( : ) ( : ) .X M N M MI M I    By 

assumption, either ( : ) 0X M   or ( : ) .X M I  If ( : ) 0.X M   Thus ( : )X M X M 
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0.  If ( : ) ,X M I  then ( : ) .X M X M MI N    This shows that N is a minimal 

submodule of M.            

 

Proposition 2.42   Let M be a faithful multiplication R-module and I, J be ideals of R. 

Then, M MI MJ   if and only if .R I J   

Proof. Assume that .M MI MJ   Since ,M MI MJ   we have  

MR M MI MJ    ( )I J M  by Proposition 2.39 and Proposition 2.37 (2). Thus 

,R I J   and ( ) 0M I J MI MJ     by Proposition 2.38 (1), which implies that 

0.I J   Therefore, .R I J   

 Conversely, suppose that ,R I J   where I and J are ideals of R. Then MI and 

MJ are submodules of M. Thus ( )M MR M I J MI MJ      and by Proposition 

2.38 (1), we have ( ) 0.MI MJ M I J     Therefore, .M MI MJ      



 
 

CHAPTER  3 

MINC11 AND MAXC11 MODULES 

 

 Throughout this chapter, all rings well be associative ring with identity and all 

right modules will be unitary. In this chapter, we will define of minC11 and maxC11 

modules and find some related basic results.  

 

Definitions and Examples 

 In this section we well introduce the notion of minC11 and maxC11 modules with 

some examples. 

  

Definition 3.1  An R-module M is said to be minC11 module, if every minimal 

submoodule has a complement which is a direct summand of M. i.e., for each minimal 

submodule N of M there exists a direct summand K of M such that K is a complement 

of N in M. A ring R is minC11 if it is minC11 R-module. 

 

Definition 3.1  An R-module M is said to be maxC11 module, if every maximal 

submoodule with nonzero right annihilator has a complement which is a direct 

summand of M. i.e., for each minimal submodule L of M with nonzero right annihilator 

there exists a direct summand K of M such that K is a complement of L in M. A ring R 

is maxC11 if it is maxC11 R-module. 

 

Remarks and Examples  

 (1)  Every C11-module is minC11 and maxC11. Because any submodule has a 

complement which is a direct summand. But convert is not true in general.  

 (2)  Every CS-module is minC11 and maxC11. 

Proof. By (Smith and Tercan. 1993:1814), every CS-module is C11. 

 (3)  Every simple module is minC11 and maxC11. In particular, 2 3 6 10, , ,Z Z Z Z  

as a Z -module is minC11 and maxC11. 

Proof. By (Dung, Huynh, Smith and Wisbauer. 1994:55), every simple module is CS. 
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(4)  Every uniform module is minC11 and maxC11. In particular, each of Z -module 

4 8 9 16, , , ,Z Z Z Z Z  is minC11 and maxC11. 

 

MinC11 and MaxC11 Modules Properties 

 In this section, we give preliminary results which will be used in the later 

chapters. We stat this section by a simple and useful result. 

 

Lemma 3.3  Let N be a submodule of M and K be a direct summand of M. K is a 

complement of N in M if and only if 0K N   and .eK N M    

Proof.  Suppose K is a complement of N in M. Then 0.K N   Let 0 .x M   If 

,x K  then 0 ( ).xR xR K xR K N       If ,x K  then ( ) 0N xR K    and 

hence ( ) 0.xR K N    Then ( ) 0xR K N    for all 0 .x M   Thus 

.eK N M   

 Conversely, suppose that K and N have the stated properties. There exists a 

submodule K   of M such that .M K K    Suppose that there exists a submodule K1 

of M such that 1K K  and 1 0.K N   Then 1 1 1 ( )K K M K K K      

1( ).K K K    Let 10 ( ).y K K     therefore, 0 yr n k    for some ,n N  

,k K  .r R  1 0.yr k n K N      Thus 0,yr k K K     a contradiction. 

Hence 1 0K K    and 1 .K K  That is, K is a complement of N in M. 

 

Proposition 3.4  An R-module M satisfies minC11 if and only if for any minimal 

submodule N of M, there exists a direct summand K of M such that 0K N   and 

.eK N M   

Proof. Let N be a minimal submodule of M. By hypothesis, there exists a direct 

summand K of M such that K is a complement of N in M. By Lemma 3.2, 0K N   

and .eK N M   

 Conversely, suppose that K and N have the stated properties. By Lemma 3.2, K 

is a complement of N in M. Hence M satisfies minC11. 
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Proposition 3.5  An R-module M satisfies maxC11 if and only if for any maximal 

submodule L of M with non-zero right annihilator, there exists a direct summand K of 

M such that 0K L   and .eK L M   

Proof. Let N be a maximal submodule of M with non-zero right annihilator. By 

hypothesis, there exists a direct summand K of M such that K is a complement of L in 

M. By Lemma 3.2, 0K L   and .eK L M   

 Conversely, suppose that M satisfies the stated conditions. By Lemma 3.2, K is 

a complement of L in M. Hence M satisfies minC11. 

 

Lemma 3.6  Let M be an R-module and I be an ideal of R such that ( ).RI Ann M  

Then 

 (1)  A submodule N be a minimal submodule of R-module if and only if N be a 

minimal of (R/I)-module. 

 (2)  A submodule L be a maximal submodule of R-module if and only if L be a 

maximal of (R/I)-module. 

Proof. (1)  Suppose N be a minimal submodule of R-module. Let 0 ,m N   then 

( )m r I  , ( ) ( / ), .mr mI mr r I R I m M       By Lemma 2.13, N is a minimal 

(R/I)-module. Conversely, Suppose N is a minimal submodule of (R/I)-module. Let 

0 ,m N   then mr  0 ( ), , .mr mr mI m r I r R m M         By Lemma 2.13, 

N is a minimal R-module. 

 (2)  Suppose L be a maximal submodule of R-module M. Then M/L is simple 

submodule of R-module. By (1), M/L is simple submodule of (R/I)-module. Hence L is 

a maximal submodule of (R/I)-module. Conversely, let L is a maximal submodule of 

(R/I)-module M. Then M/L is simple submodule of (R/I)-module. By (1), M/L is simple 

submodule of R-module. Hence L is a maximal submodule of R-module. 

 

Proposition 3.7  Let M be an R-module and let I be an ideal of R such that 

( ).RI Ann M  M is maxC11 R-module then M is maxC11 (R/I)-module and the converse 

is true if ( ) ( ).R RAnn M Ann L  
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Proof. Let L be a maximal submodule of (R/I)-module and / /( ) 0 .R I R IAnn L I   By 

Lemma 2.6, L is a maximal submodule of R-module. Since / /( ) 0 ,R I R IAnn M I   so 

there exists /r I R I   with r I  such that / ( ),R Ir I Ann L   hence 0r   and 

0.Nr   Thus ( ) 0.RAnn L   By hypothesis, there exists a direct summand K of RM  

such that K is a complement of L in .RM  It is easy to see that K is a complement of L 

in /R IM  and K is a direct summand in / .R IM  That is, M is maxC11 (R/I)-module. 

 Conversely, let L be a maximal R-module with ( ) 0.RAnn L   Then L is a 

maximal (R/I)-module. Now, since ( ) ( ),R RAnn M Ann L  there exists ( )Rr Ann L  and 

( ).Rr Ann M  Thus ,r I  that is /0R I I r I    and ( ) 0.L r I   Hence 

/ ( ) 0.R IAnn L   But M is a maxC11 (R/I)-module, there exists a direct summand K of 

/R IM  such that K is a complement of L in / .R IM  Therefore, that K is a complement of 

L in RM  and K is a direct summand in .RM  That is, M is maxC11 R-module. 

 

Proposition 3.8  Let M be an R-module and let I be an ideal of R such that 

( ).RI Ann M  M is minC11 R-module if and only if M is minC11 (R/I)-module.  

Proof. Similar Proposition 2.7. 

 

Proposition 3.9  Let be an R-module. 

 (1)  If M satisfies maxCS then M satisfies maxC11. 

 (2)  If M satisfies minCS then M satisfies minC11. 

Proof. (1)  Clear. 

 (2)  Let M is a minCS R-module and let N be a minimal submodule of M. By 

Proposition 2.29, there exists a complement submodule K of M, contain N, such that 

.e cN K M   It is easy to see that K is a minimal closed submodule of M. By 

hypothesis, K is a direct summand of M. Let M K K    for some submodule K   of 

M. It is clearly that 0N K    and .eN K M   By Lemma 3.3, K   is a complement 

of N in M. That is, M satisfies minC11. 

 



 
 

CHAPTER  4 

ON THE DIRECT SUM OF MINC11 AND MAXC11 

MODULES 

 

Throughout this chapter, all rings are associative with identity and all right 

modules are unitary. In this chapter, we studied direct sums of minC11 and maxC11 

modules and find out further properties.  

 

The direct sum of MinC11 and MaxC11 Modules 

Lemma 4.1  Let ,M M    such that each M   satisfies minC11, if N be a minimal 

submodule of M then there exists a unique M   with 0.N M    

Proof. Let N be a minimal submodule of M. Then there exists a M   of M such that 

0.N M    Next we show that has unique. Suppose there exists a , ,M M      

such that 0.N M   Hence by property of N, we have 0 ,N N M M      a 

contradiction. Therefore, .M M   

 

Theorem 4.2  Any direct sum of module with minC11 satisfies minC11. 

Proof. Let M  ( )  be non-empty collection of module, each satisfies minC11. Let 

.M M    Let N be a minimal submodule of M. By Lemma 4.1, there exists a 

unique M   of M such that 0 .N N M     Since M   satisfies minC11, then there 

exists a direct summand K  of M   such that 0K N    and .eK N M    Let 

, .M M    
   It is clearly that 0M N   and 0.K M

   Let ,K K M
   

then 0.N K   Next we show that .eN K M   Let 0 .A M   If 0,A N   then 

0 ( ).A N A N K      If 0,A N   then we shall shown that 0.A K   Suppose 

that 0.A K   then ( ) ( ) ( ) 0.A K A K M A K A M 
           Thus 0,A   

a contradiction. Then 0 ( ).A N K    Hence .eN K M   That is, M satisfies 

minC11
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Lemma 4.3   Let ,M M    such that each M   satisfies maxC11. If L is any 

maximal submodule of M, then there exists at least one M  with .L M M    

Proof. Let L be any maximal submodule of M. If ,L M M    for all .M M   Then 

,L M M     a contradiction. Therefore, there exists at least one M  with 

.L M M                        

 

Theorem 4.4  Any direct sum of modules with maxC11 satisfies maxC11. 

Proof. Let M  ( )  be a non-empty collection of module, each of them satisfies 

maxC11. Let .M M    Let L be a maximal submodule of M. By property of L, 

there exists at least one M   such that 0.L M    Hence L M   is a maximal 

submodule of .M   But M   satisfies maxC11, by Proposition 3.5, there exists a direct 

summand K  of M   such that ( ) 0K L M     and ( ) .eK L M M      Note 

that 0,L K   ( ) ( )K L M K L M         and ( ) .eK L M M      Let   

be non-empty subset of   containing   such that there exists a direct summand K   of 

M M 
    with 0L K    and with ( ) .eL K M M      Suppose .    Let 

,  .   Let { }      and .M M M M  
     Now 

( )A L K M
    is a submodule of .M    

If ,A M  we have .M L   Then ( )L M L M M 
     is a maximal 

submodule of ,M   and ( ) 0.RAnn L M    Let  K K   is a submodule of M  then 

K   is a direct summand of M   and moreover ( ) 0.L M K     Consider the 

submodule .L K   Note that ( ) ( )L K M L K M         which is an essential 

submodule of .M   Then ( ) .eL K M M      Moreover ( )L K M A M 
     is 

an essential submodule of .M   Hence, ( ) .eL K M M      Therefore, by Lemma 

3.3, K   is a complement of L M   in .M   

If ,A M  we have A  is a maximal submodule of M  and ( ) 0.RAnn A   By 

hypothesis, there exists a direct summand K  of M  such that 0A K   and 
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.eA K M    Since 0.K K
   Let .K K K

    Then K   is a direct summand 

of .M   Clearly, ( )L M L M A      is a maximal submodule of M   such that 

( ) 0,RAnn L M    and ( ) 0.L M K     Next we shall show that 

( ) .eL K M M      Consider the submodule .L K   Note that ( )L K M    

contains ( ) ,L K M    so that ( ) .eL K M M      Moreover ( )L K M
  

( ) [( ) ] ,L K K M L K M K A K    
           which is an essential 

submodule of .M   Therefore ( ) .eL K M M      By Lemma 3.3, K   is a 

complement of L M   in .M   

Repeating this argument, there exists a direct summand K of M such that 0L K   

and .eL K M   By Proposition 3.5, M satisfies maxC11.                                              

 

Corollary 4.5  Any direct summand of modules with minC11 (maxC11) satisfies minC11 

(maxC11). 

Proof. Immediate by Theorem 4.2, 4.4.          

 

Corollary 4.6  Any direct sum of C11-modules satisfies minC11 and maxC11. 

Proof. Immediate by Theorem 4.2 and 4.4.           

 

Corollary 4.7  Any direct sum of CS-modules satisfies minC11 and maxC11. 

Proof. Immediate by Theorem 4.2 and 4.4.         

 

Corollary 4.8  Any direct sum of minCS-modules satisfies minC11. 

Proof. Immediate by Proposition 3.9 (2) and Theorem 4.2.       

 

Corollary 4.9  Any direct sum of maxCS-modules satisfies maxC11. 

Proof. Immediate by Proposition 3.9 (1) and Theorem 4.4.       

 

Example 4.10  In [2] is show that 2 8M  Z Z is not minCS, but each of 2Z and 8Z

are minC11. Hence by Theorem 2.10 2 8M  Z Z is minC11. 
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The next results deal with special cases when a direct summand of minC11 

modules is minC11. 

 

Lemma 4.10  Let 1 2.M M M   Then 1M  satisfies minC11 if and only if for every 

minimal submodule N of 1,M  there exists a direct summand K of M such that 

2 ,M K  0,K N   and K N is essential submodule of .M  

Proof. Suppose 1M  satisfies minC11. Let N be a minimal submodule of 1.M  By 

Proposition 3.4, there exists a direct summand L of 1M  such that 0N L   and 

1.eN L M   Clearly, 2( ) 0L M N    and 2( )L M N  is an essential in .M   

Conversely, suppose 1M  has the stated property. Let H be a minimal 

submodule of 1.M  By hypothesis, there exists a direct summand K of M such that 

2 ,M K  0,K H   and K H is an essential submodule of .M  Now 

1 2( )K K M M    1 2( )K M M   so that 1K M  is a direct summand of ,M  and 

hence also of 1,M  1( ) 0,H K M    and 1 1( ) ( ) ,H K M H K M      which is 

an essential submodule of 1.M  By Proposition 3.4, 1M  satisfies minC11.       

 

Lemma 4.11   Let 1 2.M M M   Then 1M  satisfies maxC11 if and only if for every 

maximal submodule L of 1M  with nonzero right annihilator, there exists a direct 

summand K of M such that 2 ,M K  0,K L   and K L is an essential submodule 

of .M  

Proof. Suppose 1M  satisfies maxC11. Let L be a maximal submodule of 1M  with 

nonzero right annihilator. By Proposition 3.5, there exists a direct summand N of 1M  

such that 0L N   and .eL N M   Clearly, 2( ) 0L N M    and 2( )L K M 

is essential in .M   

Conversely, suppose 1M  has the stated property. Let H be a maximal 

submodule of 1M  with nonzero right annihilator. By hypothesis, there exists a direct 

summand K of M such that 2 ,M K  0,K H   and K H is an essential 
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submodule of .M  Now 1 2( )K K M M    1 2( ) ,K M M   hence 1K M  is a 

direct summand of ,M  and also of 1,M  1( ) 0,H K M    and 

1 1( ) ( ) ,H K M H K M      which is an essential submodule of 1.M  By 

Proposition 3.5, 1M  satisfies maxC11.         

 

Theorem 4.12   Let 1 2M M M   be a minC11-module such that for every direct 

summand K of M with 2 0,K M   2K M  is a direct summand of .M  Then 1M  is 

a minC11-module. 

Proof. Let N be a minimal submodule of 1.M  By hypothesis, there exists a direct 

summand K of M such that 2( ) 0,N M K    and 2N M K  is an essential 

submodule of M by Proposition 3.4. Moreover, 2M K is a direct summand of .M  

Now the result follows from Lemma 4.11.         

 

Corollary 4.13   Let M be a minC11-module and K is a direct summand of M such that 

/M K is K -injective. Then K satisfies minC11. 

Proof. Let K is a direct summand of .M  There exists a submodule K of M such that 

M K K   and, by hypothesis, K  is K -injective. Let L be a direct summand of M

such that 0.L K    By [Dung, Lemma 7.5], there exists a submodule H of M such 

that 0,H K   ,M H K   and .L H  Thus L is a direct summand of ,H  hence 

L K  is a direct summand of .M H K    By Theorem 4.12, K  satisfies minC11.   

 

Corollary 4.14   Let 1 2M M M  be a direct sum of a submodule 1M   and an injective 

submodule 2.M  Then M satisfies minC11 if and only if 1M  satisfies minC11. 

Proof. If M satisfies minC11, then 1M satisfies minC11 by Corollary 4.13.  

Conversely, if 1M satisfies minC11, then M satisfies minC11 by Theorem 4.2.             
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On the endomorphism rings of MinC11 and MaxC11 Modules 
 

 We close this chapter by considering the relation between minC11 (maxC11)-

modules and their endomorphism rings. Throughout this section, M is a right R-module 

with the endomorphism ring S. We call M a maxC11 module if every maximal 

submodule with nonzero left annihilator has a complement which is a direct summand 

of M. M is called a minC11 if every minimal submodule has a complement which is a 

direct summand of M. R is called a right maxC11 (resp. right minC11) ring if RR  is a 

maxC11 (resp. minC11) module. 

 

Theorem 4.15  Let M be a finitely generated, quasi-projective right R-module which is 

a self-generator. Then M is a maxC11 module if and only if S is a right maxC11 ring. 

Proof. We assume that M is a maxC11. For every maximal right ideal K of S with 

nonzero left annihilator in S, KM  is a maximal submodule of M by Lemma 2.32 (2). 

Since K has nonzero left annihilator, there is some 0 f S   such that 0,fK   whence 

KM  has nonzero left nonzero annihilator in S (in deed, 0).fKM   By hypothesis, 

there exists a direct summand X of M such that 0KM X   and .eKM X M   

Since X is a direct summand of M, by Lemma 2.31, we have XX I M eM   for some 

idempotent .e S  Consequently, XI eS  is a direct summand of S, and hence 

0.XK I   Next we shall show that S.X eK I   Let A  be a nonzero right ideal of   

S. Then AM  is a submodule of .M  Since ( ) 0,XKM I M AM    this implies  

( ) 0,XK I A    showing that .X eK I S   By Proposition 3.5, S is a maxC11 ring. 

 Conversely, let S is a right maxC11 ring. For an arbitrary maximal submodule X 

of M with nonzero left annihilator in S, { | ( ) }XI f S f M X    is a maximal right 

ideal of S with nonzero left annihilator in S. Therefore, there exists a direct summand 

K of S such that 0XI K   and .X eI K S   Since K  is a direct summand of S, by 

Lemma 2.31, we have K eS  for some idempotent .e S  Consequently, KM eM  

is a direct summand of M, and hence 0.X KM   Next we shall show that 

.eX KM M   Let Y be a nonzero submodule of M, then YI  is a right ideal of .S  
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Since ( ) 0,X YI K I    this implies ( ) 0,X YI M KM I M    showing that 

.X eI K S   By Proposition 3.5, S is a maxC11 ring.       

 

Theorem 4.15  Let M be a finitely generated, quasi-projective right R-module which is 

a self-generator. Then M is a minC11 module if and only if S is a right minC11 ring. 

Proof. Similar to that of Theorem 4.14.         

 

Theorem 4.16  Let R be commutative ring. If M is a faithful, finitely generated, and 

multiplication R -module, then M is a maxC11-module if and only if R is a maxC11 

ring. 

Proof. Let M be a maxC11-module and I  be a maximal ideal of R with nonzero 

annihilator. Hence by Proposition 2.39, MI is a maximal submodule of .M  But M is 

faithful multiplication, we have ( ) ( ) 0.Ann MI Ann I   Thus by hypothesis, there 

exists a direct summand K of M such that 0MI K   and .eMI K M   Since M

is multiplication module, we have K MJ  for some ideal J  of ,R  so by Proposition 

2.42, J  is a direct summand in .R  It is easy to see that 0.I J   Next we shall show 

that .eI J R   Let A  be a nonzero ideal of ,R  then MA  is submodule of .M  Since 

( ) (( ) ) 0,MI MJ MA M I J A       thus ( ) 0.I J A    So that .eI J R   By 

Proposition 3.5, R  is maxC11 ring. 

  Let R  is a maxC11-ring and L  be a maximal submodule of M  with nonzero 

annihilator. Hence by Proposition 2.39, there exists a maximal ideal I  of R  such that 

.L MI  But M  is faithful multiplication, we have ( ) ( ) 0.Ann L Ann I   Thus by 

hypothesis, there exists a direct summand J  of R  such that 0I J   and .eI J R   

Since M  is a multiplication module, we have K MJ  is a submodule of .M  So by 

Proposition 2.42, K  is a direct summand in .M  It is easy to see that 0.L K   Next 

we show that .eL K M   Let N  be a nonzero submodule of .M  We have N MA  

for some ideal A  of .R  Since ( )L K N   (( ) ) 0,M I J A    we get 

( )L K N   0.  Thus .eL K M   By Proposition 3.5, M  is a maxC11-module.   
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Theorem 4.17  In commutative ring ,R  if M  is a faithful, finitely generating, and 

multiplication R -module, then M  is minC11-module if and only if R  is minC11 ring. 

Proof. Similar to that of Theorem 4.16. 



 
 

CHAPTER  5 

CONCLUSIONS 

 

 In this study, we proposed and proved the following properties. 

1.   Definition of MinC11 and MaxC11 modules 

1.1   An R-module M is said to be a minC11 module, if every minimal submodule 

has a complement which is a direct summand of M. i.e., for each minimal submodule 

N of M there exists a direct summand K of M such that K is a complement of N in M. A 

ring R is minC11 if it is a minC11 R-module. 

 1.2   An R-module M is said to be a maxC11 module, if every maximal 

submodule with nonzero right annihilator has a complement which is a direct summand 

of M. i.e., for each minimal submodule L of M with nonzero right annihilator there 

exists a direct summand K of M such that K is a complement of L in M. A ring R is 

maxC11 if it is a maxC11 R-module. 

 

2.   MinC11 and MaxC11 modules properties 

2.1   Let N be a submodule of M and K be a direct summand of M. K is a complement 

of N in M if and only if 0K N   and .eK N M   

 2.2   An R-module M satisfies minC11 if and only if for any minimal submodule 

N of M, there exists a direct summand K of M such that 0K N   and .eK N M   

 2.3   An R-module M satisfies maxC11 if and only if for any maximal submodule 

L of M with non-zero right annihilator, there exists a direct summand K of M such that 

0K L   and .eK L M   

 2.4   Let M be an R-module and I be an ideal of R such that ( ).RI Ann M  Then 

 (1)  A submodule N is a minimal submodule of R-module if and only if N is a 

minimal of (R/I)-module. 

 (2)  A submodule L is a maximal submodule of R-module if and only if L is a 

maximal of (R/I)-module. 
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 2.5   Let M be an R-module and let I be an ideal of R such that ( ).RI Ann M  

M is maxC11 R-module then M is a maxC11 (R/I)-module and the converse is true if 

( ) ( ).R RAnn M Ann L  

 2.6   Let M be an R-module and let I be an ideal of R such that ( ).RI Ann M  

M is a minC11 R-module if and only if M is a minC11 (R/I)-module. 

 2.7   Let be an R-module. 

(1)  If M satisfies maxCS, then M satisfies maxC11. 

(2)  If M satisfies minCS, then M satisfies minC11. 

 

3.   The direct sum of MinC11 and MaxC11 modules 

3.1   Let ,M M    such that each M   satisfies minC11. If N is a minimal 

submodule of M, then there exists a unique M   with 0.N M    

 3.2   Any direct sum of modules with minC11 satisfies minC11. 

 3.3   Any direct sum of modules with maxC11 satisfies maxC11. 

 3.4   Any direct summand of modules with minC11 (maxC11) satisfies minC11 

(maxC11). 

 3.5   Any direct sum of C11-modules satisfies minC11 and maxC11. 

 3.6   Any direct sum of CS-modules satisfies minC11 and maxC11. 

 3.7   Any direct sum of minCS-modules satisfies minC11. 

 3.8   Any direct sum of maxCS-modules satisfies maxC11. 

 3.9   Let 1 2.M M M   Then 1M  satisfies minC11 if and only if for every 

minimal submodule N of 1,M  there exists a direct summand K of M such that 

2 ,M K  0,K N   and K N is an essential submodule of .M  

 3.10   Let 1 2.M M M   Then 1M  satisfies maxC11 if and only if for every 

maximal submodule L of 1M  with nonzero right annihilator, there exists a direct 

summand K of M such that 2 ,M K  0,K L   and K L is an essential submodule 

of .M  
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 3.11   Let 1 2M M M   be a minC11-module such that for every direct 

summand K of M with 2 0,K M   2K M  is a direct summand of .M  Then 1M  is 

minC11-module. 

 3.12   Let M be a minC11-module and K is a direct summand of M such that 

/M K is K -injective. Then K satisfies minC11. 

 3.13   Let 1 2M M M  be a direct sum of a submodule 1M   and an injective 

submodule 2.M  Then M satisfies minC11 if and only if 1M  satisfies minC11. 

 

4.   The relation between MinC11 (MaxC11) Modules and MinC11 (MaxC11) Rings 

4.1   Let M be a finitely generated, quasi-projective right R-module which is a self-

generator. Then M is a maxC11 module if and only if S is a right maxC11 ring. 

 4.2   Let M be a finitely generated, quasi-projective right R-module which is a 

self-generator. Then M is a minC11 module if and only if S is a right minC11 ring. 

 4.3   For a commutative ring ,R  if M is a faithful, finitely generated, and 

multiplication R -module, then M is a maxC11-module if and only if R is a maxC11 

ring. 

 4.4   For a commutative ring ,R  if M  be a faithful, finitely generated, and 

multiplication R -module, then M  is a minC11-module if and only if R  is a minC11 

ring
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