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ABSTRACT

Thesis Title : On the Direct Sums of MinCy: and MaxCi1 Modules
Student’s Name : Mr. Hagim Rayalong
Advisory Committee : Asst. Prof. Dr. Sarapee Chairat and
Dr. Nguyen Dang Hoa Nghiem
Degree and Program : Master of Science in Mathematics and Mathematics Education
Academic Year : 2018

In this thesis, we defined minCy: and maxCi: modules M over an associative
ring R with identity. An R-module M is said to be a minC11 module, if every minimal
submodule has a complement which is a direct summand of M. An R-module M is said
to be a maxCi1 module, if every maximal submodule has a complement which is a
direct summand of M. Then any direct sum of modules with minCy: satisfies minCus
and any direct sum of modules with maxCiz satisfies maxCi1. Furthermore, we prove
that any direct sum of modules with minCi1 (maxCia) satisfies minCi1 (maxCui). Let

M =M, ®M, be a minCii-module such that for every direct summand K of M
KnM, =0, K&M, isadirect summand if M. Then M, is a minCy1-module.

Moreover, if M is a finitely generated, quasi-projective right R-module which is
a self-generator, then M is a maxCi1 (minCi1) module if and only if the endomorphism

ring S of a right R-module M is a right maxCi1 (minCi1) ring.
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CHAPTER 1
INTRODUCTION

Mohamed and Muller (1990 : 12-37) introduced the concept of extending
module, where R-module M is called an extending (or CS), if every submodule is
essential in a direct summand of M. Equivalently, M is an extending, if and only if every
closed submodule is a direct summand. Later, Dung, Huynh, Smith, and Wisbauer,
studied extending modules and found many properties of extending modules. From that
time, characterizations and properties of certain extending modules have become
interesting and important to researchers in this area.

There are many papers concerned with the generalization of CS-module, an
important tool in this is the notion of minCS and maxCS modules. Hazmi introduced
minCS and maxCS modules following that an R-module M is called minCS (maxCS) if
every minimal submodule (every maximal submodule with nonzero right annihilator)
is a direct summand of M. Hadi and Majeed (2012a : 1-13) studied minCS (max) CS
modules. They proved that, if R is a nonsingular ring then R is a maxCS ring if and only
if R is a minCS ring. Later they proved that a direct summand of a minCS (maxCS)
module is a minCS (maxCS) module, but the converse is not true in general.

As we know the direct sum of two CS-modules is not a CS-module. One of the
most interesting gquestions concerning CS-modules is when a (finite or infinite) direct
sum of CS-modules is also a CS-module. Smith and Tercan, (1993 : 1809-1847)
introduced Cii-modules defined as follows : a module M satisfies Cy1 if every
submodule has a complement which is a direct summand of M, i.e., for each submodule
N of M there exists a direct summand K of M such that K is a complement of N in M.
A C11-module was defined as a general of CS-modules. Then we would like to work on
minC11 and maxCi1 modules.

For this study, the reseacher shall defined the definition of minC11 and maxCi
modules and studied some properties of minCy: and maxCiz modules. Moreover, we

shall find relations of minCi1 and maxCi1 modules and its endomorphism rings.



Objective of the Study

1) to define the definition of minC11 and maxCi1 modules ;

2) to prove that any direct sum of module with minCi1 (maxCi1) satisfies
minCi1 (maxCiy) ;

3) to give the conditions to the direct summand of minC11 module satisfies
minCys, and

4) to find relations of minC11 (maxCi1) modules and their endomorphism rings.

Scope and Limitation

Throughout this study, all rings are associative with identity and all modules are
unitary right R-modules. In this study, we shall define the definition of minCi1 and
maxC11 modules. The focus of our discussion in this note is mainly on the direct sum
of minCy; and maxC11 modules. Moreover, we try to find some conditions of minCis

(maxCi1) modules and apply to minCi1 (maxCia) rings.

Expected Benefits for the Study

For this study, the definition of minCy1 and maxCy: modules will be defined.
Any direct sum of modules with minCi: (maxCii) satisfies minCii (maxCi) will be
proved. The conditions to the direct summand of minC1: module satisfies minCq1 will
be obtained. Finally, pure mathematical research helps us to improve and refresh the
quality of what we teach, and certainly the world needs a large number of graduates
with a wide variety of mathematical skills to fill the wide variety of positions that
require some mathematics or the ability to analyze problems logically.



CHAPTER 2
REVIEW OF LITERATURE

In this chapter, we investigate some fundamental properties of CS modules and
study the direct sum of minCy1 and maxCi1 modules. Moreover, their related results are
stated. Therefore, for this study some useful definitions and theorems will be presented

as follows.

Literature Review

Mohamed and Muller (1990 : 12-37) introduce the extending module defied by
a R-module M is called an extending (or, CS), if every submodule is essential in a direct
summand of M. Equivalently, M is extending, if and only if every closed submodule is
a direct summand. Let M be a right R-module. We consider the following conditions.

(C1) Every submodule of M is essential in a direct summand of M.

(C2) Every submodule of M which is isomorphic to a direct summand of M is
itself a direct summand of M.

(C3) For any direct summands M,, M, of M such that M, "M, =0, the
submodule M, @ M, is also a direct summand of M.

M is called continuous if it satisfies conditions (C1) and (Cz) ; quasi continuous
if it satisfies conditions (C1) and (Cs) ; CS-module if it satisfies only the conditions
(Ca).

From the above conditions, we have :

injective = quasi-injective = continuous = quasi-continuous = CS

Dung, Huynh, Smith, and Wisbauer (1994 : 55-65) studied extending module
and found many properties of extending modules. The interesting properties of
extending module that is any direct summand of an extending module is also extending.
In particular, for any ring R, = -injective R-modules are extending. Moreover, let

M=M &M, d..&M, be afinite direct sum of relatively injective module M,, then

M is extending if and only if all M, are extending.



Smith and Tercan (1993 : 1809-1847) defined C11 module as follows. An R-
module M is called a C11 module, if every submodule of M has a complement which is
a direct summand of M, i.e., for each submodule N of M there exists a direct summand
K of M such that K is a complement of N in M. C11 modules was defined as a general
of CS modules. They studied C1: modules and found many properties of C11 modules
as follows.

Any direct sum of modules with Ci1 satisfies Ci1. Moreover, a module M

satisfies Cy1 if and only if M =Z,(M)@® K for some nonsingular submodule K of M
and both Z,(M) and K satisfies Cu.

Husain (2005 : 13-53) introduce the concept of minCS and maxCS modules,
where an R-module M is called minCS (maxCS) if every minimal submodule (every
maximal submodule with nonzero right annihilator) is a direct summand of M. This
result, in particular, Hadi and Majeed proved that, if R is a nonsingular ring then R is a
maxCSs ring if and only if R is a minCS ring. Later, they proved that a direct summand
of minCS (maxCS) modules is minCS (maxCS) modules, but the converse is not true,
in general. Moreover, Thuat, Hai, Nghiem and Chairat, proved that if M is semiprime,
weak duo module, then M is maxCS if and only if it is minCS. In addition, Jain, Al-
Hazmi and Alahmadi, proved that if R is a prime ring which is not a domain, then R is
a right nonsingular, right max-min CS with uniform right ideal if and only if R is left
nonsingular, left max-min CS with uniform left ideal.

Barnard (1981 : 174-178) defined multiplication modules and residual in a ring
as follows.

A right R-module M is called a multiplication modules if every submodule of
M is of the from M, for some ideal | of R. Let N be a submodule of M of an R-module
M, the ideal

(N:My)={reR|Mrc N}
is called residual of N by Min R and (0: M;) is called annihilator of M.

Hadi and Majeed (2012a : 1-13) studied multiplication and proved their

theorems as follows.

In commutative ring R, if M is a faithful, finitely generated, and multiplication

R-module, then M is minCS (maxCS)-modules if and only if R is minCS (maxCS)-rings.



Theoretical Background

Definitions and theorems

For basic definitions, theorems and notations that will be appeared in this study,
we refer to Smith and Tercan (1993), Mohamed and Muller (1990), Tercan and Yucel
(2016), Kasch (1982), Lam (1991), Husain (2005), and Dung, Huynh, Smith and
Wisbauer (1994). However, many of them can also be found in other texts on modules
and rings theory, e.g. Anderson-Fuller (1992), Faith (1973) and Passman (1991). Here

we recall some notations which are used for investigations presented in this study.

Definition 2.1 A ring is a non-empty set R together with two binary operations, that
we shall denote by + and - and called addition and multiplication (also called product),
respectively, such that, for all a, b, c e R the following axioms are satisfies.

(1) (R, +) isan additive Abelian group.

(2) (R, -) isamultiplicative semi group.

(3) Multiplication is distributive (on both sides) over addition; that is, for all
a, b, ceR, a-(b+c)=(a-b)+(a-c), (a+b)-c=(a-c)+(b-c).
(The two distributive law are respectively called the left distributive law and the right

distributive law.) We shall usually write simply ab instead of a-b for a, beR.

Definition 2.2 An associative ring is a ring R in which multiplication is associative;

that is, forall a, b, ceR, (a-b)-c=a-(b-c). Our rings will be associative rings.

Definition 2.3 A ring with identity is a ring R in which the multiplicative semi group
has an identity element; that is, there exists e € Rsuch that ae=a=ea for all aeR.
The element e is called the identity or unity element of R. Generally, the identity

element is denote by 1.

Definition 2.4 A commutative ring is a ring R in which multiplication is commutative;

that is, ab=ba forall a,beR.

Throughout, all ring are associative rings with identity unless otherwise stated.



Definition 2.5 Let (R, +, -) be aring and let S be a non-empty subset of R. Then S

is called a subring of R if (S, +, -) itself is a ring.

Definition 2.6 A non-empty subset | of R is called a right ideal of R if
(1) a,bel implie a-bel, and

(2) arel forall ael and r e R.

Definition 2.7 Let | be a right ideal of R.

(1) 1is called maximal if | #R and for any right ideal J oI, either J =1 or
J=R.

(2) 1is called minimal if 1 =0 and for any right ideal J < I, either J =1 or

J=0.

Definition 2.8 Let M be an Abilian group with binary operation+. Let EndM denote
the collection of endomorphism & of M, i.e., 6:M — M satisfies
O(a+b) =06(a)+0(b) (a, beM).
Define addition and multiplication in EndM by
(0+9)(a) = 0(a) +¢(a)
(0-9)(a) = 0(4(a))
for all &, ¢ cEndM, a e M. With these definition it can checked that (End(M), +, -)
is a ring, celled the endomorphism ring of M, with zero element the zero mapping
0:M —>M given by 0(m)=0(meM) and identity element the identity mapping
1:M —> M given I(m)=m (me M).



Definition 2.9 Let M be an Abelian group and let R be a ring with 1. Then M is said

to be a right R-module if and only if there exists a map M xR — M, written
multiplicatively as (m, r) — mr, such that

(1) (m +m,)r=mr+m,r,

(2) m(r,+r,)=mr,+mr,,

(3) m(rr,)=(mr)r,, and

(4) ml=m
forall m,m, m,eM and r, r,, r, e R. Note that if R is a field, then a right R-module

is precisely a right R-vector space.
Throughout, all module are unitary right R-module unless otherwise stated.

Definition 2.10 A non-empty subset N of right R-module M is called submodule of M
if
(1) forall a,beN, a-beN and

(2) areNforall ae N and reR.

Definition 2.11 Let M be an R-module and N be a submodule of M.

(1) N is called a maximal submodule of M if N = M and for any submodule K
of M such that N < K, we have K=M or K =N.

(2) N is called a minimal submodule of M if N #0 and for any submodule K

of M such that K = N, we have K =0 or K = N.

Definition 2.12 Let X be a subset of R-module M. Then the set
N :{inmxi eX, reR, neD}
i=1
is a submodule of M and it is called the submodule of M generated by X and is denoted

by |X). A subset X of a module M is called a generating set of M if | X) = M.



Definition 2.13 A module (or right ideal) is called finitely generated if and only if it

has a finite generating set.

Definition 2.14 An R-module M is called simple module if M =0 and for any
submodule N of M, N =0 or N =M. We emphasize in addition that the minimal

submodules are precisely simple submodules.

Lemma 2.15 An R-module Missimple < M #0AVmeM[m#0=mR=M].
Proof. (Kasch F. 1982:19)

Definition 2.16 An R-module M is called cyclic : < 3m; e M [M =m,R].

Definition 2.17 An R-module M is called the direct sum of the set {B, |ie I} of
submodules B, of M, in symbols:
DM =>B,
M=@®B, -
& 2)Vje|{ajryjz Bizo}
il 2]

M =@ B, is called a direct decomposition of M into the sum of submodules

iel

{B liecl}.

In case of finite index set, say | ={L, 2, 3, ..., n}. M is also written as

M =B ®B,®..®B, -®B

Definition 2.18 A submodule N of M is called a direct summand of M, denote by

N c, M, if there exists a submodule K of M with M =N @ K. Example, in Z, the

ideal nZ with n#0, n# 1 is not a direct summand.

Definition 2.19 An R-module M =0 is called a directly indecomposable if it is not a

direct sum of two non-zero submodules. i.e., 0 and M are the only direct summands of



M. Examples, every simple module M is directly indecomposable for it has only 0 and

M as submodules, Z, is a directly indecomposable.

Definition 2.20 Let N be a submodule of an R-module M. We define factor module
(or quotient module) M /N ={m+ N |m e M}, with the addition and multiplication by
any elements m, m, m, e M and r € R by setting,

1) (m+N)+(m,+N)=(m +m,)+N and

(2) (m+N)r=mr+N.

Note that the factor module has a natural map @:M — M /N define by

m+ m-+ N. This natural map is called natural (canonical) epimorphism of M to the

factor module M / N. Moreover, it is easy to see that ¢ is epimorphism.

Definition 2.21 Let R be aring and M be an R-module. The following are given

(1) asubmodule N of M is called essential (or large) in M, denote by N <, M,
if N has non-zero intersection with any non-zero submodule of M. If N is essential in
M, we say that M is essential extension of N. Clearly, M <, M.

(2) asubmodule N of M is called complement to the submodule K of M, if N is
maximal with respect to property that N N K =0. A submodule N of M will be called
complement in M, provided there exists K < M such that N is a complement of K in
M. By Zorn’s Lemma, any submodule of M has a complement.

(3) asubmodule N of M is called closed in M, denote N c, M, if it has no
proper essential extension in M. i.e., if K <M suchthat N c, K, then N = K. Closed

submodule are precisely complement submodule (Husain. 2005:14).

Theorem 2.22 Every submodule in M is a direct summand if and only if every
submodule is closed.
Proof. (Kasch. 1982:139).

Definition 2.23 An R-module M is called a uniform module if M =0 and any two

non-zero submodules of M intersect nontrivially (equivalently: any non-zero
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submodule of M indecomposable, or else: any non-zero submodule of M is essential in
M). Clearly, uniform closed submodule of M are precisely minimal closed submodule
of M.

Definition 2.24 A right annihilator of M in R, denote by ann,(M), is the set of all

elements in R such that, forall me M, mr =0.

Definition 2.25 An R-module M is called a faithful module if its ann, (M) =0.

Definition 2.26 An R-module M is called an extending module (or CS-module) if
every submodule is an essrntial in a direct summand of M. Equivalently, M is extending,

if and only if every closed submodule is a direct summand.

Definition 2.27 An R-module M is called a C11 module, if every submodule of M has
a complement which is a direct summand of M. i.e., for each submodule N of M, there

exists a direct summand K of M such that K is a complement of N in M.

Definition 2.28  An R-module M is called a minCS module if every minimal

submodule is a direct summand of M.

Definition 2.29  An R-module M is called a maxCS module if every maximal

submodule with nonzero right annihilator is a direct summand of M.

Proposition 2.30 Let N< M. There exists K< M, containing N, such that
Nc, Kc, M.
Proof. (Tercan and Yucel. 2016:76).

Definition 2.31 Let M is called a self-generator if it generates all its submodules.

Lemma 2.32 Let M be a finitely generated, quasi-projective right R-module which is

a self-generator and S its endomorphism ring. Then X is a direct summand of M if and
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onlyif I, ={f €S| f(M) < X} isadirect summand of S. In this case, X =(M)e and
I, =Se for some idempotent e € S.

Proof. (Thuat, Hai, Nghiem, and Chairat. 2016:3)

Lemma 2.33 Let M be a finitely generated, quasi-projective right R-module which is
a self-generator and S its endomorphism ring. Then

(1) Xis a maximal submodule of M ifand only if I, ={f €S| f(M)< X} is
a maximal right ideal of S.

(2) Conversely, K is a maximal right ideal of S if and only if KM = ZSGK s(M)

is a maximal submodule of M.
Proof. (Thuat, Hai, Nghiem, and Chairat. 2016:3)

Lemma 2.34 Let M be a finitely generated, quasi-projective right R-module which is
a self-generator and S its endomorphism ring. Then

(1) Xis a minimal submodule of M ifand only if I, ={f eS| f(M)<c X} is
a minimal right ideal of S.

(2) Conversely, K is a minimal right ideal of S if and only if KM = ZSEK s(M)

is a minimal submodule of M.
Proof. (1) Let X is a minimal submodule of M and let I, {f €S| f(M) < X} which
is a right ideal of S. By hypothesis I, #0. Suppose that, there exists a non-zero right
ideal J of Ssuchthat 0= J — I,. Thenwe have 0= JM c I, M = X, since M is a self-
generator. Hence JM =1, M. This implies that J =1,. Therefore, I, is a minimal
right ideal of S.

Conversely, let I,{f €S| f(M)c X} be a right ideal of S and let X is a
minimal submodule of M. Then X = 0. Suppose that, there exists a non-zero submodule
N of M such that 0= N < X. Thenwe have 0N =1 /M c X =1,M, since Misa
self-generator. Hence 1, =1,. This implies that N = X. Therefore, X is a minimal

right ideal of S.

(2) We use the same argument as that given in (1).
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On faithful multiplication modules
Throughout, this section all ring will be commutative ring with identity and all

right R-module will be unitary.

Definition 2.35 LetR be aringand N and K be submodules of an R-module M, the set
(N:K)={r eR|Kr — N} is called residual of N by K in R and it is an ideal of R, and
for every ideal | of R, the set (N:1)={meM |ml < N} is called residual of N by I in

M and it is a submodule of M.

Definition 2.36  An R-module M is called multiplication module if for each N of M,

there exists an ideal | of R such that N = MI.

Proposition 2.37 If M is a faithful multiplication R-module, then the following
statements are equivalent.

(1) M is finitely generated.

(2) If Aand B are ideals of R such that MA< MB then Ac B.

(3) For each submodule N of M there exists a unique ideal I of R such that
N = MI.

(4) M = MA for any proper ideal A of R.

(5) M =MP for any maximal ideal P of R.
Proof. (El-Bast and Smith. 1988:768).

Proposition 2.38 Let M be a faithful R-module. Then M is a multiplication module if
and only if

1) ﬂmA(MI,l) =M (ﬂ I,) for any non-empty collection of ideals I,, A € A of

R, and
(2) for any submodule N of M and ideal A of R such that N —MA there exists

an ideal B with Bc A and N < MB.

Proof. (El-Bast and Smith. 1988:759).



13

Proposition 2.39 If M is a faithful multiplication R-module, then M is a finitely
generated.
Proof. (Lee D. and Lee H. 1993:133)

Proposition 2.40 Let M be a faithful multiplication R-module. Then a submodule N
of M is maximal if and only if there exists a maximal ideal | of R such that N = MI.
Proof. Suppose that N is a maximal submodule of M. Then, there exists an ideal | of R
such that N = MI. It is sufficient to prove that | is maximal ideal of R. For any ideal J
of Rsuchthat | cJcR, N=MIl <« MJ < MR =M. Since N is a maximal submodule
of M, either MJ =MI or MJ =M. If MJ = MI then J =1 by Proposition 2.37 (2). If
MJ =M then J =R, again by Proposition 2.37 (2). Therefore, | is a maximal ideal of
R.

Conversely, suppose that N =M1 for some maximal ideal I of R. Let X be a
submodule of M such that N = X < M. Thus

| =(MI:M)=(N:M)c(X:M)cR.

Since | is a maximal ideal of R, either (X :M)=1 or (X:M)=R. If (X:M)=1 then
X=M(X:M)=MI=N.If (X:M)=R then X =M (X :M)=MR =M. This show

that N is a maximal submodule of M.

Proposition 2.41 Let M be a faithful multiplication R-module. Then a submodule N
of M is minimal if and only if there exists a minimal ideal | of R such that N = MI.
Proof. Suppose that N is a minimal submodule of M. Then, there exists an ideal | of R
such that N = MI. It is sufficient to prove that | is minimal ideal of R. For any ideal J
of Rsuchthat J — I, welet IM < MI = N. By hypothesis, either MJ =0 or MJ = MI.
If MJ =0 then J =0 because M is faithful. If MJ =Ml then J =1, by Proposition
2.37 (2). Therefore, | is a minimal ideal of R.

Conversely, suppose that N =MI for some minimal ideal | of R. Let X be a
submodule of M such that X =N. Then (X:M)c(N:M)=(MI:M)=1. By

assumption, either (X :M)=0or (X :M)=1. If (X:M)=0. Thus X=M(X:M)=
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0. If (X:M)=1, then X =M(X:M)=MI =N. This shows that N is a minimal

submodule of M.

Proposition 2.42 Let M be a faithful multiplication R-module and I, J be ideals of R.
Then, M =MI@MJ ifandonlyif R=1®J.
Proof. Assume that M=MI®MJ. Since M=MI+MJ, we have

MR=M =MI+MJ = (I +J)M by Proposition 2.39 and Proposition 2.37 (2). Thus
R=1+J, and M(I nJ)=MIMJ =0 by Proposition 2.38 (1), which implies that
I nJ =0. Therefore, R=1®J.

Conversely, suppose that R =1@® J, where | and J are ideals of R. Then Ml and

MJ are submodules of M. Thus M =MR=M(l +J)=MI +MJ and by Proposition
2.38 (1), we have MI "nMJ =M (I nJ) =0. Therefore, M = MI @ MJ.



CHAPTER 3
MINC11 AND MAXC11 MODULES

Throughout this chapter, all rings well be associative ring with identity and all
right modules will be unitary. In this chapter, we will define of minCi1 and maxCiz

modules and find some related bhasic results.

Definitions and Examples
In this section we well introduce the notion of minC11: and maxCi1 modules with

some examples.

Definition 3.1 An R-module M is said to be minCi: module, if every minimal
submoodule has a complement which is a direct summand of M. i.e., for each minimal
submodule N of M there exists a direct summand K of M such that K is a complement

of N in M. Aring R is minCu if it is minCy1 R-module.

Definition 3.1 An R-module M is said to be maxCi1 module, if every maximal
submoodule with nonzero right annihilator has a complement which is a direct
summand of M. i.e., for each minimal submodule L of M with nonzero right annihilator
there exists a direct summand K of M such that K is a complement of L in M. A ring R

is maxCyy if it is maxCi1 R-module.

Remarks and Examples

(1) Every Cii-module is minCy1 and maxCii. Because any submodule has a
complement which is a direct summand. But convert is not true in general.

(2) Every CS-module is minC1; and maxCij.
Proof. By (Smith and Tercan. 1993:1814), every CS-module is Cis.

(3) Every simple module is minCy; and maxCua. In particular, Z,, Z,, Z, Z,,

as a Z -module is minCy11 and maxCis.

Proof. By (Dung, Huynh, Smith and Wisbauer. 1994:55), every simple module is CS.
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(4) Every uniform module is minCy: and maxCaa. In particular, each of Z -module

2,2, 24,24, Z,5 isMinCy1 and maxCua.

MinCi1: and MaxCi1 Modules Properties

In this section, we give preliminary results which will be used in the later

chapters. We stat this section by a simple and useful result.

Lemma 3.3 Let N be a submodule of M and K be a direct summand of M. K is a

complement of N in M if and only if KNN =0 and K&N <, M.

Proof. Suppose K is a complement of N in M. Then KNN =0. Let 0= xeM. If
xekK, then 0#xR=xRNK cxRN(K@®N). If x¢ K, then NNn(xR+K) =0 and

hence XRN(K@®N)=0. Then XRN(K®N)=0 for all 0#xeM. Thus
K@&Nc, M.

Conversely, suppose that K and N have the stated properties. There exists a
submodule K’ of M such that M = K @ K'. Suppose that there exists a submodule K1
of M such that K< K, and K,AN=0. Then K, =K "M =K n(K®&K")=

K®(K,nK"). Let 0=ye(K,nK"). therefore, 0= yr=n+k for some neN,
keK, reR. yr—-k=neK nN=0. Thus yr=ke KnK’'=0, a contradiction.

Hence K, nK'=0 and K, =K. That is, K is a complement of N in M.

Proposition 3.4 An R-module M satisfies minCy if and only if for any minimal
submodule N of M, there exists a direct summand K of M such that KN =0 and
K&Nc, M.

Proof. Let N be a minimal submodule of M. By hypothesis, there exists a direct
summand K of M such that K is a complement of N in M. By Lemma 3.2, KN =0
and K&N c, M.

Conversely, suppose that K and N have the stated properties. By Lemma 3.2, K

is a complement of N in M. Hence M satisfies minCus.
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Proposition 3.5 An R-module M satisfies maxCy1 if and only if for any maximal
submodule L of M with non-zero right annihilator, there exists a direct summand K of

Msuchthat KNnL=0and K&Lc, M.

Proof. Let N be a maximal submodule of M with non-zero right annihilator. By
hypothesis, there exists a direct summand K of M such that K is a complement of L in
M. By Lemma3.2, KnL=0and K&Lc, M.

Conversely, suppose that M satisfies the stated conditions. By Lemma 3.2, K is
a complement of L in M. Hence M satisfies minCas.

Lemma 3.6 Let M be an R-module and I be an ideal of R such that I < Ann,(M).
Then

(1) A submodule N be a minimal submodule of R-module if and only if N be a
minimal of (R/I)-module.

(2) A submodule L be a maximal submodule of R-module if and only if L be a

maximal of (R/I)-module.
Proof. (1) Suppose N be a minimal submodule of R-module. Let 0=me N, then
m(r+1)=mr+ml=mr, V(r+1)e(R/1), me M. By Lemma 2.13, N is a minimal
(R/1)-module. Conversely, Suppose N is a minimal submodule of (R/I)-module. Let
0zmeN, then mr=mr+0=mr+ml=m(r+1), vreR, me M. By Lemma 2.13,
N is a minimal R-module.

(2) Suppose L be a maximal submodule of R-module M. Then M/L is simple
submodule of R-module. By (1), M/L is simple submodule of (R/I)-module. Hence L is
a maximal submodule of (R/l)-module. Conversely, let L is a maximal submodule of
(R/1)-module M. Then M/L is simple submodule of (R/I)-module. By (1), M/L is simple

submodule of R-module. Hence L is a maximal submodule of R-module.

Proposition 3.7 Let M be an R-module and let I be an ideal of R such that

I < Anny(M). M is maxCi1 R-module then M is maxCiz (R/I)-module and the converse

is true if Ann,(M) = Anng(L).
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Proof. Let L be a maximal submodule of (R/I)-module and Anng,, (L) #0;, =1. By
Lemma 2.6, L is a maximal submodule of R-module. Since Anng,, (M) =1=0;,, so
there exists r+1eR/1 with rel such that r+1 e Anng, (L), hence r=0 and
Nr=0. Thus Ann,(L)=0. By hypothesis, there exists a direct summand K of M,
such that K is a complement of L in M. It is easy to see that K is a complement of L
in My, and K is a direct summand in M,,. That is, M is maxCu1 (R/l)-module.
Conversely, let L be a maximal R-module with Ann,(L)=#0. Then L is a
maximal (R/1)-module. Now, since Ann, (M) = Ann, (L), there exists r € Ann.(L) and
re Anng(M). Thus rel, that is Og, =l=#r+1 and L(r+1)=0. Hence
Anng,, (L) # 0. But M is a maxCu1 (R/l)-module, there exists a direct summand K of
Mg, such that K is a complement of L in M,,. Therefore, that K is a complement of

Lin M; and K is a direct summand in M. That is, M is maxC11 R-module.

Proposition 3.8 Let M be an R-module and let | be an ideal of R such that
I < Ann,(M). M is minC11 R-module if and only if M is minCi1 (R/I)-module.

Proof. Similar Proposition 2.7.

Proposition 3.9 Let be an R-module.

(1) If M satisfies maxCS then M satisfies maxCis.

(2) If M satisfies minCS then M satisfies minCi;.
Proof. (1) Clear.

(2) Let M is a minCS R-module and let N be a minimal submodule of M. By
Proposition 2.29, there exists a complement submodule K of M, contain N, such that

Nc, Kc, M. Itis easy to see that K is a minimal closed submodule of M. By

hypothesis, K is a direct summand of M. Let M = K@ K" for some submodule K’ of

M. Itisclearlythat NN K'=0 and N ® K' <, M. By Lemma 3.3, K’ isacomplement

of N in M. That is, M satisfies minCa:.



CHAPTER 4
ON THE DIRECT SUM OF MINC11 AND MAXC11
MODULES

Throughout this chapter, all rings are associative with identity and all right
modules are unitary. In this chapter, we studied direct sums of minCi1 and maxCu

modules and find out further properties.

The direct sum of MinCy1 and MaxCiu. Modules

Lemma4.l Let M =@, , M, such that each M, satisfies minCug, if N be a minimal
submodule of M then there exists a unique M, with N "M, #0.

Proof. Let N be a minimal submodule of M. Then there exists a M, of M such that
N "M, 0. Next we show that has unique. Suppose there existsa M_ =M, 3y € A,
such that N~M 0. Hence by property of N, we have 0=N=N~M cM , a

contradiction. Therefore, M, =M.

Theorem 4.2 Any direct sum of module with minCy; satisfies minCis.

Proof. Let M, (1 € A) be non-empty collection of module, each satisfies minCyz. Let
M=&,,M,. Let N be a minimal submodule of M. By Lemma 4.1, there exists a
unique M, of M such that 0= N =N nM,. Since M, satisfies minCi1, then there
exists a direct summand K, of M, such that K, "N =0 and K, ®N c, M,. Let

M =&® M. . Itis clearly that M'AN=0and K, nM'=0. Let K=K, ®M’,

yen, y2i
then N nK =0. Next we show that N® K <, M. Let 0Ac M. If AN =0, then
0ANnNc AN(N®K). If AnN =0, then we shall shown that AnK = 0. Suppose
that ANK =0. then AnK=ANn(K,®M")=(AnK,)®(AnM")=0. Thus A=0,
a contradiction. Then 0= AN(N@®K). Hence N®K <, M. That is, M satisfies

minCi1
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Lemma 43 Let M =&, ,M,, such that each M, satisfies maxCy:. If L is any
maximal submodule of M, then there exists at least one M, with LnM, #M,.

Proof. Let L be any maximal submodule of M. If LAM, =M ,, forall M, c M. Then
L=®, M, =M, a contradiction. Therefore, there exists at least one M , with

LAM, =M.

Theorem 4.4 Any direct sum of modules with maxCi; satisfies maxCis.

Proof. Let M, (1€ A) be a non-empty collection of module, each of them satisfies
maxCi1. Let M =®,_, M. Let L be a maximal submodule of M. By property of L,
there exists at least one M, such that LM, #0. Hence LN M, is a maximal
submodule of M ,. But M, satisfies maxCi1, by Proposition 3.5, there exists a direct
summand K, of M, suchthat K, n(LAM,)=0 and K, ®(LAM,)c, M,. Note
that LNK, =0, (K, ®L)nM, =K, ®(LnM,)and (K, ®L)nM, c, M,. Let A’
be non-empty subset of A containing A such that there exists a direct summand K’ of
M'=&®, .M, with LnK"=0 and with (L&K")nM"<, M". Suppose A’= A. Let
peh, peN. Let A'=ANU{y} and M'=0, .M, =M'®M,. Now
A=(L®K')nM, is a submodule of M .

If A=M,, we have M, c L. Then LNnM"=(LAM,)®M , is a maximal

!
submodule of M", and Ann,(LNM")#0. Let K"=K’ is a submodule of M"then
K” is a direct summand of M" and moreover(LNM")~K"=0. Consider the
submodule L® K”". Note that (L&K")nM'=(L®K")~M' which is an essential

submodule of M". Then (L&K")"M'c, M". Moreover (LOK")NM , =A=M  is

an essential submodule of Mp. Hence, (L®K")nM" <, M". Therefore, by Lemma

3.3, K" isacomplementof LAM" in M".
If A#M,, we have A is a maximal submodule of M, and Ann.(A)=0. By

hypothesis, there exists a direct summand K, of M, such that AnK, =0 and
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A®K, <, M. Since K, "K'=0. Let K"=K'®K . Then K" is a direct summand
of M”. Clearly, LAM"=(LNM")@ A is a maximal submodule of M" such that
Ann,(LNM") =0, and (LAM")nK"=0. Next we shall show that
(L&K")nM"c, M". Consider the submodule L@® K”. Note that (L®K")~M’
contains (L&®K')nM’, so that (L&K")"M'c, M. Moreover (LOK" )M, =
(LeK'@K,)nM, =[(LOK)"M J®K, 6 =ADK,, which is an essential
submodule of Mﬂ. Therefore (LOK")NAM"c, M". By Lemma 3.3, K" is a

complementof LAM”" in M".
Repeating this argument, there exists a direct summand K of m suchthat LNK =0

and L® K <, M. By Proposition 3.5, m satisfies maxCiy.

Corollary 4.5 Any direct summand of modules with minCi: (maxCa1) satisfies minCiy
(maXC11).

Proof. Immediate by Theorem 4.2, 4.4.

Corollary 4.6 Any direct sum of Ci1-modules satisfies minCi: and maxCaiz.
Proof. Immediate by Theorem 4.2 and 4.4.

Corollary 4.7 Any direct sum of CS-modules satisfies minC11 and maxCas.
Proof. Immediate by Theorem 4.2 and 4.4.

Corollary 4.8 Any direct sum of minCS-modules satisfies minCis.

Proof. Immediate by Proposition 3.9 (2) and Theorem 4.2.

Corollary 4.9 Any direct sum of maxCS-modules satisfies maxCiy.

Proof. Immediate by Proposition 3.9 (1) and Theorem 4.4.

Example 4.10 In [2] is show that M =Z, @ Z, is not minCS, but each of Z,and Z,

are minCy1. Hence by Theorem 2.10 M =Z, @ Z, is minCauz.



22

The next results deal with special cases when a direct summand of minCy

modules is minCaia.

Lemma 4.10 Let M =M, ®M,. Then M, satisfies minCy if and only if for every
minimal submodule N of M, there exists a direct summand K of M such that
M, c K, KNnN =0, and K® N is essential submodule of M.
Proof. Suppose M, satisfies minCi1. Let N be a minimal submodule of M,. By
Proposition 3.4, there exists a direct summand Lof M, such that NnL=0 and
N@®Lc, M,. Clearly, (L&M,)nN =0 and (L& M,)® N is an essential in M.
Conversely, suppose M, has the stated property. Let Hbe a minimal
submodule of M,. By hypothesis, there exists a direct summand K of M such that
M,cK, KnH=0, and K®&His an essential submodule of M. Now
K=Kn(M,&M,)=(KnM,)®M, sothat K M, isadirect summand of M, and
hence also of M;, HN(KnM,)=0, and H®(KnM,)=(H ®K)~M,, which is

an essential submodule of M,. By Proposition 3.4, M, satisfies minCuz.

Lemma 4.11 Let M =M, ®M,. Then M, satisfies maxCi: if and only if for every
maximal submodule Lof M, with nonzero right annihilator, there exists a direct
summand K of M suchthat M, € K, KnL=0, and K@ L is an essential submodule

of M.

Proof. Suppose M, satisfies maxCii. Let Lbe a maximal submodule of M, with
nonzero right annihilator. By Proposition 3.5, there exists a direct summand N of M,
suchthat LNMN =0 and L&N <, M. Clearly, Ln(N®M,)=0and L&(K®M,)

is essential in M.

Conversely, suppose M, has the stated property. Let Hbe a maximal
submodule of M, with nonzero right annihilator. By hypothesis, there exists a direct

summand Kof M such that M, c K, KnH=0, and K®H s an essential



23

submodule of M. Now K=Kn(M,;®M,)=(KnM,)®M,, hence KnM, is a
direct summand of M, and also of M, HnN(KNM,;)=0 and
He(KnM)=(H®K)nM,, which is an essential submodule of M,. By

Proposition 3.5, M, satisfies maxCis.

Theorem 4.12 Let M =M, ®M, be a minCii-module such that for every direct
summand K of M with KnM, =0, K& M, isadirect summand of M. Then M, is
a minCy-module.

Proof. Let N be a minimal submodule of M,. By hypothesis, there exists a direct
summand Kof M such that (N®M,)nK =0, and N®&M,®K is an essential
submodule of M by Proposition 3.4. Moreover, M, @ K is a direct summand of M.

Now the result follows from Lemma 4.11.

Corollary 4.13 Let M be a minCi:-module and K is a direct summand of M such that
M/Kis K -injective. Then K satisfies minCis.

Proof. Let K is a direct summand of M. There exists a submodule K'of M such that
M =K @ K"and, by hypothesis, K'is K -injective. Let L be a direct summand of M

such that Ln K'=0. By [Dung, Lemma 7.5], there exists a submodule H of M such
that HNK'=0, M =H®K’, and LcH. Thus Lis a direct summand of H, hence

L ® K'is a direct summand of M =H @ K". By Theorem 4.12, K satisfies minCij.

Corollary 4.14 Let M =M, @ M, be adirect sum of a submodule M, and an injective
submodule M,. Then M satisfies minCuz if and only if M, satisfies minCua.
Proof. If M satisfies minCiy, then M, satisfies minCy by Corollary 4.13.

Conversely, if M, satisfies minCus, then M satisfies minCi1 by Theorem 4.2.
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On the endomorphism rings of MinC1: and MaxCi1 Modules

We close this chapter by considering the relation between minCi1 (maxCis)-
modules and their endomorphism rings. Throughout this section, M is a right R-module
with the endomorphism ring S. We call M a maxCi1 module if every maximal
submodule with nonzero left annihilator has a complement which is a direct summand

of M. M is called a minCy; if every minimal submodule has a complement which is a
direct summand of M. R is called a right maxCi: (resp. right minCu1) ring if R; is a

maxCi1 (resp. minCi1) module.

Theorem 4.15 Let M be a finitely generated, quasi-projective right R-module which is
a self-generator. Then M is a maxCi1 module if and only if S is a right maxCiz ring.

Proof. We assume that M is a maxCii. For every maximal right ideal K of S with
nonzero left annihilator in S, KM is a maximal submodule of M by Lemma 2.32 (2).

Since K has nonzero left annihilator, there issome 0= f €S such that fK =0, whence
KM has nonzero left nonzero annihilator in S (in deed, fKM =0). By hypothesis,
there exists a direct summand X of M such that KM n X =0 and KM @ X <, M.
Since X is a direct summand of M, by Lemma 2.31, we have X =1, M =eM for some
idempotent e<S. Consequently, I, =eS is a direct summand of S, and hence
K1, =0. Next we shall show that K& 1, <. S. Let A be a nonzero right ideal of
S. Then AM is a submodule of M. Since (KM @I,M)nAM =0, this implies
(K®l,)mA=0, showing that K@ I, <, S. By Proposition 3.5, S is a maxCiz ring.

Conversely, let S is a right maxCaz ring. For an arbitrary maximal submodule X
of M with nonzero left annihilator in S, 1, ={f €S| f(M) < X} is a maximal right
ideal of S with nonzero left annihilator in S. Therefore, there exists a direct summand
Kof Ssuchthat I, "nK=0and I, ®K <, S. Since K is a direct summand of S, by
Lemma 2.31, we have K =eS for some idempotent e € S. Consequently, KM =eM
is a direct summand of M, and hence X "KM =0. Next we shall show that

X@®KM c, M. Let Y be a nonzero submodule of M, then 1, is a right ideal of S.
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Since (I, ®K)nIl, #0, this implies (I,M@®KM)nI,M =0, showing that

I, ®K <, S. By Proposition 3.5, S is a maxCi: ring.

Theorem 4.15 Let M be a finitely generated, quasi-projective right R-module which is
a self-generator. Then M is a minC1: module if and only if S is a right minCay ring.
Proof. Similar to that of Theorem 4.14.

Theorem 4.16 Let R be commutative ring. If M is a faithful, finitely generated, and
multiplication R -module, then M is a maxCyi-module if and only if Ris a maxCu
ring.

Proof. Let M be a maxCii-module and | be a maximal ideal of R with nonzero
annihilator. Hence by Proposition 2.39, Ml is a maximal submodule of M. But M is
faithful multiplication, we have Ann(MI)= Ann(l)=0. Thus by hypothesis, there
exists a direct summand K of M such that MI WK =0 and MI @K <, M. Since M

is multiplication module, we have K =MJ for some ideal J of R, so by Proposition
2.42, J isadirect summand in R. It is easy to see that | mJ =0. Next we shall show
that 1 nJ c, R. Let A be a nonzero ideal of R, then MA is submodule of M. Since
(MI®@MI)NMA=M((1 ®I)NA) =0, thus (1 ®J)A=0. Sothat 1 ®J <, R. By

Proposition 3.5, R is maxCi; ring.

Let R is a maxCiyi-ring and L be a maximal submodule of M with nonzero
annihilator. Hence by Proposition 2.39, there exists a maximal ideal I of R such that
L=MI. But M is faithful multiplication, we have Ann(L)= Ann(l)=0. Thus by

hypothesis, there exists a direct summand J of R suchthat InJ=0and I ®J <, R.

Since M is a multiplication module, we have K =MJ is a submodule of M. So by
Proposition 2.42, K is a direct summand in M. It is easy to see that L K =0. Next
we show that LN K <, M. Let N be a nonzero submodule of M. We have N = MA

for some ideal A of R. Since (LOK)NN=M((I®J)nA)=0, we get
(L&EK)NN=0. Thus L& K <, M. By Proposition 3.5, M is a maxCii:-module.
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Theorem 4.17 In commutative ring R, if M is a faithful, finitely generating, and

multiplication R -module, then M is minCyi-module if and only if R is minCuys ring.
Proof. Similar to that of Theorem 4.16.



CHAPTER 5
CONCLUSIONS

In this study, we proposed and proved the following properties.
1. Definition of MinCi1 and MaxCi1 modules

1.1 AnR-module M is said to be a minC11 module, if every minimal submodule
has a complement which is a direct summand of M. i.e., for each minimal submodule
N of M there exists a direct summand K of M such that K is a complement of N in M. A
ring R is minCyy if it is a minCi1 R-module.

1.2 An R-module M is said to be a maxCi1 module, if every maximal
submodule with nonzero right annihilator has a complement which is a direct summand
of M. i.e., for each minimal submodule L of M with nonzero right annihilator there
exists a direct summand K of M such that K is a complement of L in M. A ring R is

maxCai1 if it is @ maxCi1 R-module.

2. MinCiu1 and MaxC11 modules properties
2.1 Let N be a submodule of M and K be a direct summand of M. K is a complement
of NinMifand only if KAN =0 and K&N <, M.

2.2 An R-module M satisfies minCis if and only if for any minimal submodule
N of M, there exists a direct summand K of M such that K "N =0 and K&N <, M.

2.3 An R-module M satisfies maxCi if and only if for any maximal submodule
L of M with non-zero right annihilator, there exists a direct summand K of M such that
KnL=0and K&Lc, M.

2.4 Let M be an R-module and | be an ideal of R such that I < Ann,(M). Then

(1) A submodule N is a minimal submodule of R-module if and only if N is a
minimal of (R/l)-module.

(2) A submodule L is a maximal submodule of R-module if and only if L is a

maximal of (R/I)-module.
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2.5 Let M be an R-module and let | be an ideal of R such that I < Ann,(M).
M is maxCi1 R-module then M is a maxCi1 (R/I)-module and the converse is true if
Ann, (M) = Ann, (L).

2.6 Let M be an R-module and let | be an ideal of R such that | < Ann,(M).
M is a minC11 R-module if and only if M is a minC11 (R/I)-module.

2.7 Let be an R-module.

(1) If M satisfies maxCS, then M satisfies maxCi;.
(2) If M satisfies minCS, then M satisfies minCi.

3. The direct sum of MinCi1 and MaxCi11 modules

31 Let M=®, ,M,, such that each M, satisfies minCy. If N is a minimal
submodule of M, then there exists a unique M, with N "M, #0.

3.2 Any direct sum of modules with minCi; satisfies minCus.

3.3 Any direct sum of modules with maxCy; satisfies maxCiz.

3.4 Any direct summand of modules with minC11 (maxCi1) satisfies minCys
(maxCiyy1).

3.5 Any direct sum of C11-modules satisfies minCi; and maxCiz.

3.6 Any direct sum of CS-modules satisfies minC1; and maxCiz.

3.7 Any direct sum of minCS-modules satisfies minCi;.

3.8 Any direct sum of maxCS-modules satisfies maxCi.

39 Let M=M,®&M,. Then M, satisfies minCy if and only if for every
minimal submodule N of M, there exists a direct summand K of M such that
M, c K, KNnN =0, and K@ N is an essential submodule of M.

3.10 Let M =M, ®M,. Then M, satisfies maxCi1 if and only if for every
maximal submodule Lof M, with nonzero right annihilator, there exists a direct
summand K of M suchthat M, c K, KnL=0, and K® L is an essential submodule

of M.
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311 Let M =M, ®M, be a minCi;-module such that for every direct
summand K of M with KnM, =0, K& M, isadirect summand of M. Then M, is

minCii-module.
3.12 Let M be a minCi1-module and K is a direct summand of M such that
M /K is K -injective. Then K satisfies minCi;.

3.13 Let M =M, ®M,be a direct sum of a submodule M, and an injective

submodule M,. Then M satisfies minCuy if and only if M, satisfies minCua.

4. The relation between MinCi1 (MaxCi1) Modules and MinCi1 (MaxCi1) Rings
4.1 Let M be a finitely generated, quasi-projective right R-module which is a self-
generator. Then M is a maxCi1 module if and only if S is a right maxCuiz ring.

4.2 Let M be a finitely generated, quasi-projective right R-module which is a
self-generator. Then M is a minCyz module if and only if S is a right minCuz ring.

4.3 For a commutative ring R, if M is a faithful, finitely generated, and
multiplication R -module, then M is a maxCii-module if and only if Ris a maxCis
ring.

4.4 For a commutative ring R, if M be a faithful, finitely generated, and
multiplication R -module, then M is a minCi;-module if and only if R is a minCu

ring
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